If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+10x-84=0
a = 6; b = 10; c = -84;
Δ = b2-4ac
Δ = 102-4·6·(-84)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-46}{2*6}=\frac{-56}{12} =-4+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+46}{2*6}=\frac{36}{12} =3 $
| w-4=13 | | 2x-7x+3x=20 | | 23+x+4+x=137 | | x+4 5=9 10 | | 6-(3x+10)+4(2-x)=14 | | p+51=911 | | b+190=704 | | 4+3x-2x=10+8 | | h-187=209 | | h-187=208 | | 601=f+49 | | n+7=993 | | w-209=340 | | 7(x-2)-(3x+4)=2 | | v-84=88 | | x+x/2+x+20=180 | | g-80=529 | | y-119=561 | | 293=d-129 | | n-13=193 | | 88=v-429 | | 5x-x=160 | | m-40=640 | | 5x-x+2x=10+8 | | z+217=853 | | 95=v+11 | | p-45=29 | | s-16=7 | | 63=c-28 | | h-5=67 | | f+39=44 | | z-57=9 |